On modified asymptotic series involving confluent hypergeometric functions
نویسندگان
چکیده
A modification of standard Poincaré asymptotic expansions for functions defined by means of Laplace transforms is analyzed. This modification is based on an alternative power series expansion of the integrand, and the convergence properties are seen to be superior to those of the original asymptotic series. The resulting modified asymptotic expansion involves confluent hypergeometric functions U(a, c, z), which can be computed by means of continued fractions. Numerical examples are included, such as the incomplete Gamma function Γ(a, z) and the modified Bessel function Kν(z) for large values of z. The same procedure can be applied to uniform asymptotic expansions when extra parameters become large as well.
منابع مشابه
Hyperbolic Schwarz Maps of the Airy and the Confluent Hypergeometric Differential Equations and Their Asymptotic Behaviors
The Schwarz map of the hypergeometric differential equation is studied first by Schwarz, and later by several authors for various generalizations of the hypergeometric equation. But up to now nothing is studied about the Schwarz map for confluent equations, mainly because such a map would produce just a chaos. Recently we defined the hyperbolic Schwarz map, and studied in several cases, includi...
متن کاملTransitory minimal solutions of hypergeometric recursions and pseudoconvergence of associated continued fractions
Three term recurrence relations yn+1+bnyn+anyn−1 = 0 can be used for computing recursively a great number of special functions. Depending on the asymptotic nature of the function to be computed, different recursion directions need to be considered: backward for minimal solutions and forward for dominant solutions. However, some solutions interchange their role for finite values of n with respec...
متن کاملConfluent A-hypergeometric functions and rapid decay homology cycles
We study confluent A-hypergeometric functions introduced by Adolphson [1]. In particular, we give their integral representations by using rapid decay homology cycles of Hien [17] and [18]. The method of toric compactifications introduced in [27] and [31] will be used to prove our main theorem. Moreover we apply it to obtain a formula for the asymptotic expansions at infinity of confluent A-hype...
متن کاملFunctional inequalities involving Bessel and modified Bessel functions of the first kind
In this paper, we extend some known elementary trigonometric inequalities, and their hyperbolic analogues to Bessel and modified Bessel functions of the first kind. In order to prove our main results, we present some monotonicity and convexity properties of some functions involving Bessel and modified Bessel functions of the first kind. We also deduce some Turán and Lazarević-type inequalities ...
متن کاملPolynomial series expansions for confluent and Gaussian hypergeometric functions
Based on the Hadamard product of power series, polynomial series expansions for confluent hypergeometric functions M(a, c; ·) and for Gaussian hypergeometric functions F (a, b; c; ·) are introduced and studied. It turns out that the partial sums provide an interesting alternative for the numerical evaluation of the functions M(a, c; ·) and F (a, b; c; ·), in particular, if the parameters are al...
متن کامل